|
|
A027567
|
|
Number of distinct (modulo rotation and reflection) n X n panmagic = pandiagonal = diabolic = Nasik squares.
|
|
2
|
|
|
|
OFFSET
|
1,4
|
|
REFERENCES
|
Hunter, J. A. H. and Madachy, J. S. "Mystic Arrays." Ch. 3 in Mathematical Diversions. New York: Dover, pp. 24-25, 1975.
|
|
LINKS
|
Table of n, a(n) for n=1..6.
Harvey Heinz, Pandiagonal 5 X 5.
D. N. Lehmer, A census of squares of order 4, magic in rows, columns, and diagonals, Bull. Amer. Math. Soc. 39 (1933), 981-982.
Wolfgang Müller, Group Actions on Magic Squares, Séminaire Lotharingien de Combinatoire, B39b (1997), 14 pp.
Barkley Rosser and R. J. Walker, On the transformation group for diabolic magic squares of order four, Bull. Amer. Math. Soc. 44 (1938), 416-420.
Eric Weisstein's World of Mathematics, Panmagic Square
|
|
CROSSREFS
|
Cf. A006052.
Sequence in context: A208442 A203488 A162700 * A271188 A033475 A053060
Adjacent sequences: A027564 A027565 A027566 * A027568 A027569 A027570
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Eric W. Weisstein
|
|
EXTENSIONS
|
Corrected by _Eric Weisstein_, Mar 14 2003 to include only distinct squares; Hunter and Madachy give the count of all such squares (there are 384).
|
|
STATUS
|
approved
|
|
|
|