Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Nov 01 2019 03:55:06
%S 1,4,16,66,279,1201,5242,23133,103015,462269,2088146,9487405,43328580,
%T 198798447,915950385,4236322720,19661850045,91549502656,427539667095,
%U 2002120576312,9399659155395,44234927105888,208631813215116
%N a(n) = T(2n-1,n-1), T given by A026758. Also T(2n+1,n+1), T given by A026747.
%H G. C. Greubel, <a href="/A026762/b026762.txt">Table of n, a(n) for n = 1..500</a>
%p T:= proc(n,k) option remember;
%p if n<0 then 0;
%p elif k=0 or k = n then 1;
%p elif type(n,'odd') and k <= (n-1)/2 then
%p procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
%p else
%p procname(n-1,k-1)+procname(n-1,k) ;
%p end if ;
%p end proc;
%p seq(T(2*n-1,n-1), n=1..30); # _G. C. Greubel_, Oct 31 2019
%t T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[T[2n-1, n-1], {n, 0, 30}] (* _G. C. Greubel_, Oct 31 2019 *)
%o (Sage)
%o @CachedFunction
%o def T(n, k):
%o if (n<0): return 0
%o elif (k==0 or k==n): return 1
%o elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
%o else: return T(n-1,k-1) + T(n-1,k)
%o [T(2*n-1, n-1) for n in (1..30)] # _G. C. Greubel_, Oct 31 2019
%Y Cf. A026747, A026758, A026759, A026760, A026761, A026763, A026764, A026765, A026766, A026767, A026768.
%K nonn
%O 1,2
%A _Clark Kimberling_