login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A026637(2*n, n).
9

%I #20 Jul 03 2024 01:19:24

%S 1,2,8,26,92,332,1220,4538,17036,64412,244928,935684,3588392,13806704,

%T 53271548,206040506,798600332,3101109164,12062148368,46986821516,

%U 183276382472,715748620424,2798274135368,10951009023716,42895901012792,168167959150232,659793819847040

%N a(n) = A026637(2*n, n).

%H Vincenzo Librandi, <a href="/A026638/b026638.txt">Table of n, a(n) for n = 0..1000</a>

%F From _Vaclav Kotesovec_, Oct 21 2012: (Start)

%F G.f.: (3 - (x+1)*sqrt(1-4*x))/((x+2)*sqrt(1-4*x)).

%F Recurrence: 2*n*a(n) = (7*n-4)*a(n-1) + 2*(2*n-1)*a(n-2).

%F a(n) ~ 2^(2*n+2)/(3*sqrt(Pi*n)) (End)

%t CoefficientList[Series[1/(2+x)+3/((2+x)*Sqrt[1-4*x])-1,{x,0,20}],x] (* _Vaclav Kotesovec_, Oct 21 2012 *)

%o (PARI) my(x='x+O('x^66)); Vec( 1/(2+x)+3/((2+x)*sqrt(1-4*x))-1 ) \\ _Joerg Arndt_, May 04 2013

%o (Magma) [1] cat [n le 2 select 2^(2*n-1) else ((7*n-4)*Self(n-1) + 2*(2*n-1)*Self(n-2))/(2*n): n in [1..40]]; // _G. C. Greubel_, Jul 01 2024

%o (SageMath)

%o @CachedFunction

%o def a(n): # a = A026638

%o if n<3: return 2^(n*(n+1)/2)

%o else: return ((7*n-4)*a(n-1) + 2*(2*n-1)*a(n-2))/(2*n)

%o [a(n) for n in range(41)] # _G. C. Greubel_, Jul 01 2024

%Y Cf. A026637, A026639, A026640, A026642, A026643, A026644, A026645.

%Y Cf. A026646, A026647, A026966, A026967, A026968, A026969, A026970.

%K nonn

%O 0,2

%A _Clark Kimberling_