login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026628
a(n) = A026626(2*n, n-1).
16
1, 6, 21, 79, 296, 1117, 4237, 16147, 61782, 237208, 913466, 3526826, 13647886, 52920075, 205566205, 799791235, 3116196550, 12157265980, 47485135510, 185671296850, 726703966600, 2846827216330, 11161555459090, 43794648931054
OFFSET
1,2
LINKS
FORMULA
a(n) = ( (357*n^4 - 1625*n^3 + 2157*n^2 - 841*n + 60)*a(n-1) + 2*(2*n-5)*(51*n^3 - 101*n^2 + 34*n + 6)*a(n-2) )/(2*(n+1)*(51*n^3 - 254*n^2 + 389*n - 180)), for n >= 3, with a(1) = 1, a(2) = 6. - G. C. Greubel, Jun 19 2024
MATHEMATICA
a[n_]:= a[n]= If[n<3, 5*n-4, ((357*n^4 -1625*n^3 +2157*n^2 -841*n +60 )*a[n-1] +2*(2*n-5)*(51*n^3 -101*n^2 +34*n +6)*a[n-2])/(2*(n+1)*(51*n^3 -254*n^2 +389*n -180))];
Table[a[n], {n, 41}]
PROG
(Magma)
[n le 2 select 5*n-4 else ((357*n^4-1625*n^3+2157*n^2-841*n+60)*Self(n-1) +2*(2*n-5)*(51*n^3-101*n^2+34*n+6)*Self(n-2))/(2*(n+1)*(51*n^3-254*n^2+389*n-180)): n in [1..41]]; // G. C. Greubel, Jun 19 2024
(SageMath)
@CachedFunction
def a(n): # a = A026628
if n<3: return 5*n-4
else: return ((357*n^4 -1625*n^3 +2157*n^2 -841*n +60)*a(n-1) +2*(2*n-5)*(51*n^3 -101*n^2 +34*n +6)*a(n-2))/(2*(n+1)*(51*n^3-254*n^2+389*n-180))
[a(n) for n in range(1, 41)] # G. C. Greubel, Jun 19 2024
KEYWORD
nonn
STATUS
approved