login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026540
a(n) = T(n,n-3), T given by A026536. Also number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 3.
2
1, 2, 6, 16, 36, 104, 215, 635, 1275, 3786, 7518, 22344, 44170, 131264, 259002, 769578, 1517418, 4508580, 8888495, 26412001, 52077234, 154773696, 305257251, 907432695, 1790353357, 5323519838, 10507386918, 31251588060
OFFSET
3,2
LINKS
FORMULA
a(n) = A026536(n, n-3).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k], T[n-1, k-2] + T[n-1, k]] ]]; Table[T[n, n-3], {n, 3, 40}] (* G. C. Greubel, Apr 10 2022 *)
PROG
(SageMath)
@CachedFunction
def T(n, k): # A026536
if k < 0 or n < 0: return 0
elif k == 0 or k == 2*n: return 1
elif k == 1 or k == 2*n-1: return n//2
elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
def A026540(n): return T(n, n-3)
[A026540(n) for n in (3..40)] # G. C. Greubel, Apr 10 2022
CROSSREFS
Cf. A026536.
Sequence in context: A265106 A306332 A331393 * A351932 A329256 A128232
KEYWORD
nonn
STATUS
approved