login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026501
a(n) = least positive integer > a(n-1) and not a(j)*a(k) + a(k)*a(i) + a(i)*a(j) for 1<=i<j<k<n.
3
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 100, 102, 105, 112, 120, 130, 133, 145, 148, 165, 168, 177, 190, 210, 217, 221, 232, 240, 253, 254, 262, 263, 267, 273, 277, 280
OFFSET
1,2
COMMENTS
Unlike A000926, this sequence is infinite. The first term not in A000926 is a(37) = 100. - Ivan Neretin, Jul 29 2015
LINKS
MAPLE
N:= 1000: # to get all terms <= N
Allowed:= {$1..N}:
for count from 1 while Allowed <> {} do
a:= min(Allowed);
A[count]:= a;
Allowed:= Allowed minus{a, seq(seq(A[i]*A[j]+(A[i]+A[j])*a, j=1..i-1), i=1..count-1)};
od:
seq(A[i], i=1..count-1); # Robert Israel, Aug 11 2015
PROG
(PARI) oka(va, nv) = {for (i=1, nv, for (j=i+1, nv, for (k=j+1, nv, if (va[nv] == va[j]*va[k] + va[k]*va[i] + va[i]*va[j], return (0)); ); ); ); return (1); }
finda(va) = {na = vecmax(va) + 1; va = concat(va, na); while(! oka(va, #va), va[#va] = na++); na; }
lista(nn) = {va = [1]; print1(1, ", "); for (n=1, nn, na = finda(va); print1(na, ", "); va = concat(va, na); ); va; } \\ Michel Marcus, Aug 10 2015
CROSSREFS
Cf. A000926.
Sequence in context: A033110 A049812 A093668 * A000926 A011875 A249575
KEYWORD
nonn
EXTENSIONS
More terms from Jud McCranie
STATUS
approved