OFFSET
1,2
COMMENTS
The n Fibonacci numbers need not be distinct. - Robert Israel, Jan 25 2015
a(10) > 4427000000. - Sean A. Irvine, Aug 23 2019
LINKS
Sean A. Irvine, Java program (github)
EXAMPLE
a(12) = 1 + 3 + 8 but can't be represented using fewer than 3 Fibonacci numbers, and is the least number with this property. - Robert Israel, Jan 25 2015
MAPLE
N:= 50000: # to get a(n) where a(n) <= N
P:= Vector(N):
for i from 1 do
f:= combinat:-fibonacci(i);
if f > N then break fi;
P[f]:= 1
od:
A[1]:= 1:
rmax:= 1:
for n from 1 to N do
if P[n] = 0 then
m:= floor(n/2);
r:= min(P[1..m] + P[[seq(n-i, i=1..m)]]);
for a in select(`<=`, numtheory:-divisors(n) minus {1}, floor(sqrt(n))) do
r:= min(r, P[a] + P[n/a])
od:
P[n]:= r;
if r > rmax then
A[r]:= n;
rmax:= r;
fi
fi
od:
seq(A[i], i=1..rmax); # Robert Israel, Jan 25 2015
CROSSREFS
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(7)-a(9) from Sean A. Irvine, Aug 23 2019
STATUS
approved