login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025086
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A000045, t = A023533.
1
0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 988, 1598, 2586, 4184, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17712, 28658, 46370, 75028, 121398, 196426, 317824, 514250
OFFSET
2,5
LINKS
MATHEMATICA
b[j_]:= b[j]= Sum[KroneckerDelta[j, Binomial[m+2, 3]], {m, 0, 15}];
A025086[n_]:= A025086[n]= Sum[Fibonacci[n-j+1]*b[j], {j, Floor[(n+3)/2], n}];
Table[A025086[n], {n, 2, 100}] (* G. C. Greubel, Sep 08 2022 *)
PROG
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
A025086:= func< n | (&+[Fibonacci(k)*A023533(n+1-k): k in [1..Floor(n/2)]]) >;
[A025086(n): n in [2..100]]; // G. C. Greubel, Sep 08 2022
(SageMath)
@CachedFunction
def b(j): return sum(bool(j==binomial(m+2, 3)) for m in (0..10))
@CachedFunction
def A025086(n): return sum(fibonacci(n-j+1)*b(j) for j in (((n+3)//2)..n))
[A025086(n) for n in (2..100)] # G. C. Greubel, Sep 08 2022
CROSSREFS
Sequence in context: A091492 A284264 A273302 * A035699 A132406 A197881
KEYWORD
nonn
EXTENSIONS
Offset corrected by G. C. Greubel, Sep 08 2022
STATUS
approved