|
|
A025086
|
|
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A000045, t = A023533.
|
|
1
|
|
|
0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 988, 1598, 2586, 4184, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17712, 28658, 46370, 75028, 121398, 196426, 317824, 514250
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,5
|
|
LINKS
|
|
|
MATHEMATICA
|
b[j_]:= b[j]= Sum[KroneckerDelta[j, Binomial[m+2, 3]], {m, 0, 15}];
A025086[n_]:= A025086[n]= Sum[Fibonacci[n-j+1]*b[j], {j, Floor[(n+3)/2], n}];
|
|
PROG
|
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
A025086:= func< n | (&+[Fibonacci(k)*A023533(n+1-k): k in [1..Floor(n/2)]]) >;
(SageMath)
@CachedFunction
def b(j): return sum(bool(j==binomial(m+2, 3)) for m in (0..10))
@CachedFunction
def A025086(n): return sum(fibonacci(n-j+1)*b(j) for j in (((n+3)//2)..n))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|