login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024997
a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is an integer, s(0) = 0 = s(n), |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3. Also a(n) = T(n,n), where T is the array defined in A024996.
4
2, 8, 20, 58, 162, 462, 1318, 3782, 10886, 31436, 91016, 264134, 768094, 2237640, 6529284, 19079574, 55826166, 163538472, 479588844, 1407813438, 4136307798, 12163015662, 35793391662, 105407889930, 310620540202, 915913267652, 2702265079208
OFFSET
3,1
COMMENTS
Second differences of the central trinomial coefficients A002426. - T. D. Noe, Mar 16 2005
LINKS
FORMULA
a(n) = 2*A025179(n-1).
From G. C. Greubel, Mar 01 2017: (Start)
a(n) = 2*Sum_{k=0..floor(n/2)} binomial(n, 2*k)*binomial(2*k+1, k+1), for n>=1.
O.g.f.: ((1-x)^2-(1-x+2*x^2)*sqrt(1-2*x-3*x^2)) / sqrt(1-2*x-3*x^2) [corrected by Charles R Greathouse IV, Mar 05 2017]
E.g.f.: 2*exp(x)*(BesselI(0, 2*x) + BesselI(2, 2*x)). (End)
MATHEMATICA
Rest[Differences[CoefficientList[Series[1/Sqrt[(1 + x) (1 - 3 x)], {x, 0, 30}], x], 2]] (* Harvey P. Dale, May 11 2013 *)
Table[2 Sum[Binomial[n, 2 k] Binomial[2 k + 1, k + 1], {k, 0, Floor[n/2]}], {n, 1, 25}] (* G. C. Greubel, Mar 01 2017 *)
Rest[Rest[CoefficientList[Series[((1 - x)^2 - (1 - x) Sqrt[1 - 2 x - 3 x^2])/(x Sqrt[1 - 2 x - 3 x^2]), {x, 0, 15}], x]]] (* G. C. Greubel, Mar 02 2017 *)
PROG
(PARI) x='x +O('x^50); Vec(((1-x)^2-(1-x +2*x^2)*sqrt(1-2*x-3*x^2)) /(x*sqrt(1 - 2*x -3*x^2))) \\ G. C. Greubel, Mar 01 2017
CROSSREFS
Cf. A025179.
Sequence in context: A221066 A238760 A174477 * A081157 A099177 A100097
KEYWORD
nonn
STATUS
approved