|
|
A024680
|
|
Number of ways prime(n) is a sum of 3 odd nonprimes r,s,t satisfying 1 <= r < s < t.
|
|
1
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 1, 3, 7, 6, 5, 9, 10, 7, 9, 17, 15, 19, 15, 24, 19, 34, 29, 31, 42, 42, 55, 58, 60, 57, 60, 71, 88, 85, 97, 92, 106, 129, 137, 132, 152, 142, 153, 176, 175, 182, 196, 212, 231, 239, 238, 250, 256, 306, 305, 326, 314, 382, 394, 394, 433, 413, 437
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,12
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..1000
|
|
MAPLE
|
N:= 1000: # to get terms for primes <= N
P, NP:= selectremove(isprime, [seq(i, i=1..N, 2)]):
V:= Vector(N):
for ri from 1 while NP[ri] <= N/3 do
for si from ri+1 while NP[ri]+2*NP[si] <= N do
for ti from si+1 do
x:= NP[ri]+NP[si]+NP[ti];
if x > N then break fi;
V[x]:= V[x]+1;
od od od:
0, seq(V[P[i]], i=1..nops(P)); # Robert Israel, Nov 03 2019
|
|
CROSSREFS
|
Sequence in context: A266506 A134303 A078997 * A083531 A003417 A158986
Adjacent sequences: A024677 A024678 A024679 * A024681 A024682 A024683
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|