login
A024677
Smallest prime divisor of n-th terms of sequence A024675 (averages of two consecutive odd primes).
2
2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 5, 7, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 3, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 11, 3, 3, 3, 3, 2, 5, 2, 2, 2
OFFSET
1,1
COMMENTS
From Robert Israel, Nov 03 2019: (Start)
If prime(n+1) and prime(n+2) are twin primes, then a(n)=2.
If prime(n+1)>3 is in A023200, then a(n)=3.
Dickson's conjecture implies that for any prime p>3, there are infinitely many primes q>=p such that pq-6 and pq+6 are consecutive primes, so that a(pi(pq)-1) = p. Thus each prime should occur infinitely many times in the sequence. (End)
LINKS
MAPLE
P:= select(isprime, [seq(i, i=3..104759, 2)]):
Q:= (P[2..-1]+P[1..-2])/2:
map(min @ numtheory:-factorset, Q); # Robert Israel, Nov 03 2019
MATHEMATICA
Table[First@First@FactorInteger[(Prime[n+1]+Prime[n])/2], {n, 2, 150}] (* Vladimir Joseph Stephan Orlovsky, Jan 25 2012 *)
CROSSREFS
Sequence in context: A275803 A060131 A343391 * A276856 A174296 A163178
KEYWORD
nonn
STATUS
approved