Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Sep 08 2022 08:44:48
%S 0,2,4,7,11,16,22,28,35,43,51,60,70,81,93,105,118,132,146,161,177,194,
%T 212,230,249,269,289,310,332,355,379,403,428,454,480,507,535,564,594,
%U 624,655,687,719,752,786,821,857,893,930,968,1006,1045,1085,1126,1168,1210,1253,1297,1341,1386,1432
%N a(n) = floor((4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n))), where S(n) = {first n+3 positive integers congruent to 1 mod 3}.
%H Robert Israel, <a href="/A024224/b024224.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (3,-4,4,-4,4,-4,4,-3,1).
%F G.f.: x^2*(2-2*x+3*x^2-2*x^3+3*x^4-2*x^5+2*x^6-x^7) / ((1-x)^3*(1+x^2)*(1+x^4)). - _Colin Barker_, Dec 10 2015
%F From _Robert Israel_, Dec 10 2015: (Start)
%F a(n) = floor(A024214(n+1)/A024213(n+1)).
%F a(n) = floor((3 n^2 + 5 n - 6)/8).
%F a(8*k+j) = 24*k^2 + (5 + 6*j) k + b(j), where b(j) = -1,0,2,4,7,11,16,22 for j = 0..7. (End)
%p seq(floor((3*n^2 + 5*n - 6)/8), n=1..100); # _Robert Israel_, Dec 10 2015
%t S[n_] := 3 Range[0, n + 2] + 1; Table[Floor[SymmetricPolynomial[4, S@ n]/SymmetricPolynomial[3, S@ n]], {n, 61}] (* _Michael De Vlieger_, Dec 10 2015 *)
%o (PARI) concat(0, Vec(x^2*(2-2*x+3*x^2-2*x^3+3*x^4-2*x^5+2*x^6-x^7)/((1-x)^3*(1+x^2)*(1+x^4)) + O(x^100))) \\ _Colin Barker_, Dec 10 2015
%o (PARI) a(n) = (3*n^2 + 5*n - 6)\8; \\ _Altug Alkan_, Dec 10 2015
%o (Magma) [(3*n^2+5*n-6) div 8: n in [1..70]]; // _Vincenzo Librandi_, Dec 11 2015
%Y Cf. A042413, A042414.
%K nonn,easy
%O 1,2
%A _Clark Kimberling_
%E More terms from _Michael De Vlieger_, Dec 10 2015