OFFSET
1,2
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-4,4,-4,4,-3,1).
FORMULA
G.f.: x^2*(2-2*x+3*x^2-2*x^3+3*x^4-2*x^5+2*x^6-x^7) / ((1-x)^3*(1+x^2)*(1+x^4)). - Colin Barker, Dec 10 2015
From Robert Israel, Dec 10 2015: (Start)
a(n) = floor((3 n^2 + 5 n - 6)/8).
a(8*k+j) = 24*k^2 + (5 + 6*j) k + b(j), where b(j) = -1,0,2,4,7,11,16,22 for j = 0..7. (End)
MAPLE
seq(floor((3*n^2 + 5*n - 6)/8), n=1..100); # Robert Israel, Dec 10 2015
MATHEMATICA
S[n_] := 3 Range[0, n + 2] + 1; Table[Floor[SymmetricPolynomial[4, S@ n]/SymmetricPolynomial[3, S@ n]], {n, 61}] (* Michael De Vlieger, Dec 10 2015 *)
PROG
(PARI) concat(0, Vec(x^2*(2-2*x+3*x^2-2*x^3+3*x^4-2*x^5+2*x^6-x^7)/((1-x)^3*(1+x^2)*(1+x^4)) + O(x^100))) \\ Colin Barker, Dec 10 2015
(PARI) a(n) = (3*n^2 + 5*n - 6)\8; \\ Altug Alkan, Dec 10 2015
(Magma) [(3*n^2+5*n-6) div 8: n in [1..70]]; // Vincenzo Librandi, Dec 11 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Michael De Vlieger, Dec 10 2015
STATUS
approved