login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024224
a(n) = floor((4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n))), where S(n) = {first n+3 positive integers congruent to 1 mod 3}.
1
0, 2, 4, 7, 11, 16, 22, 28, 35, 43, 51, 60, 70, 81, 93, 105, 118, 132, 146, 161, 177, 194, 212, 230, 249, 269, 289, 310, 332, 355, 379, 403, 428, 454, 480, 507, 535, 564, 594, 624, 655, 687, 719, 752, 786, 821, 857, 893, 930, 968, 1006, 1045, 1085, 1126, 1168, 1210, 1253, 1297, 1341, 1386, 1432
OFFSET
1,2
FORMULA
G.f.: x^2*(2-2*x+3*x^2-2*x^3+3*x^4-2*x^5+2*x^6-x^7) / ((1-x)^3*(1+x^2)*(1+x^4)). - Colin Barker, Dec 10 2015
From Robert Israel, Dec 10 2015: (Start)
a(n) = floor(A024214(n+1)/A024213(n+1)).
a(n) = floor((3 n^2 + 5 n - 6)/8).
a(8*k+j) = 24*k^2 + (5 + 6*j) k + b(j), where b(j) = -1,0,2,4,7,11,16,22 for j = 0..7. (End)
MAPLE
seq(floor((3*n^2 + 5*n - 6)/8), n=1..100); # Robert Israel, Dec 10 2015
MATHEMATICA
S[n_] := 3 Range[0, n + 2] + 1; Table[Floor[SymmetricPolynomial[4, S@ n]/SymmetricPolynomial[3, S@ n]], {n, 61}] (* Michael De Vlieger, Dec 10 2015 *)
PROG
(PARI) concat(0, Vec(x^2*(2-2*x+3*x^2-2*x^3+3*x^4-2*x^5+2*x^6-x^7)/((1-x)^3*(1+x^2)*(1+x^4)) + O(x^100))) \\ Colin Barker, Dec 10 2015
(PARI) a(n) = (3*n^2 + 5*n - 6)\8; \\ Altug Alkan, Dec 10 2015
(Magma) [(3*n^2+5*n-6) div 8: n in [1..70]]; // Vincenzo Librandi, Dec 11 2015
CROSSREFS
Sequence in context: A005311 A296202 A126613 * A025727 A319159 A025702
KEYWORD
nonn,easy
EXTENSIONS
More terms from Michael De Vlieger, Dec 10 2015
STATUS
approved