login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024025
a(n) = 3^n - n^2.
7
1, 2, 5, 18, 65, 218, 693, 2138, 6497, 19602, 58949, 177026, 531297, 1594154, 4782773, 14348682, 43046465, 129139874, 387420165, 1162261106, 3486784001, 10460352762, 31381059125, 94143178298, 282429535905, 847288608818
OFFSET
0,2
FORMULA
G.f.: (1-4*x+5*x^2+2*x^3)/((1-3*x)*(1-x)^3). - Vincenzo Librandi, Oct 05 2014
a(n) = 6*a(n-1) -12*a(n-2) +10*a(n-3) -3*a(n-4) for n>3. - Vincenzo Librandi, Oct 05 2014
a(n) = A000244(n) - A000290(n). - Michel Marcus, Oct 05 2014
E.g.f.: exp(3*x) - x*(1+x)*exp(x). - G. C. Greubel, Aug 18 2023
MAPLE
A024025:=n->3^n-n^2: seq(A024025(n), n=0..50); # Wesley Ivan Hurt, Jan 11 2017
MATHEMATICA
Table[3^n - n^2, {n, 0, 25}] (* or *) CoefficientList[Series[(1 - 4 x + 5 x^2 + 2 x^3)/((1 - 3 x) (1 - x)^3), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 05 2014 *)
PROG
(Magma) [3^n-n^2: n in [0..30]]; // Vincenzo Librandi, Jul 02 2011
(SageMath) [3^n-n^2 for n in range(31)] # G. C. Greubel, Aug 18 2023
CROSSREFS
Cf. sequences of the form k^n-n^2: A024012 (k=2), this sequence (k=3), A024038 (k=4), A024051 (k=5), A024064 (k=6), A024077 (k=7), A024090 (k=8), A024103 (k=9), A024116 (k=10), A024129 (k=11), A024142 (k=12).
Sequence in context: A148429 A093635 A354420 * A360185 A084518 A150014
KEYWORD
nonn,easy
STATUS
approved