Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #18 Feb 26 2024 09:19:05
%S 0,2,15,24,1575,39366
%N Numbers k such that (product of digits of k) * (sum of digits of k) = 2k.
%C Except for k = 0, this sequence is a subsequence of A049101. - _Jason Yuen_, Feb 26 2024
%t Do[ If[ 2n == Apply[ Times, IntegerDigits[n]] Apply[ Plus, IntegerDigits[n]], Print[n]], {n, 0, 10^7} ]
%o (PARI) isok(n) = if(n, factorback(digits(n)), 0) * sumdigits(n) == 2*n \\ _Mohammed Yaseen_, Jul 22 2022
%o (Python)
%o from math import prod
%o def s(n): return sum(map(int, str(n)))
%o def p(n): return prod(map(int, str(n)))
%o for n in range(0, 10**6):
%o if p(n)*s(n)==2*n:
%o print(n) # _Mohammed Yaseen_, Jul 22 2022
%Y Cf. A007953, A007954, A049101.
%Y Cf. A038364, A038369, A062237, A066282.
%K nonn,base,fini,full
%O 1,2
%A _Jason Earls_, Dec 11 2001
%E Offset corrected by _Arkadiusz Wesolowski_, Oct 17 2012