login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that (product of digits of k) * (sum of digits of k) = 2k.
4

%I #18 Feb 26 2024 09:19:05

%S 0,2,15,24,1575,39366

%N Numbers k such that (product of digits of k) * (sum of digits of k) = 2k.

%C Except for k = 0, this sequence is a subsequence of A049101. - _Jason Yuen_, Feb 26 2024

%t Do[ If[ 2n == Apply[ Times, IntegerDigits[n]] Apply[ Plus, IntegerDigits[n]], Print[n]], {n, 0, 10^7} ]

%o (PARI) isok(n) = if(n, factorback(digits(n)), 0) * sumdigits(n) == 2*n \\ _Mohammed Yaseen_, Jul 22 2022

%o (Python)

%o from math import prod

%o def s(n): return sum(map(int, str(n)))

%o def p(n): return prod(map(int, str(n)))

%o for n in range(0, 10**6):

%o if p(n)*s(n)==2*n:

%o print(n) # _Mohammed Yaseen_, Jul 22 2022

%Y Cf. A007953, A007954, A049101.

%Y Cf. A038364, A038369, A062237, A066282.

%K nonn,base,fini,full

%O 1,2

%A _Jason Earls_, Dec 11 2001

%E Offset corrected by _Arkadiusz Wesolowski_, Oct 17 2012