login
A023224
Primes p such that 7*p + 4 is also prime.
3
7, 19, 37, 61, 79, 97, 139, 151, 157, 211, 229, 271, 307, 349, 379, 457, 487, 547, 571, 601, 607, 619, 631, 709, 751, 757, 769, 829, 877, 907, 937, 997, 1021, 1069, 1117, 1129, 1237, 1249, 1291, 1327, 1429, 1447, 1471, 1489, 1549, 1567, 1579, 1621, 1627, 1699
OFFSET
1,1
COMMENTS
Subsequence of A024902. All terms are congruent to 1 mod 6 because 7(6n + 5) + 4 is divisible by 3. - John Cerkan, Jul 08 2016
MAPLE
A023224:=n->`if`(isprime(n) and isprime(7*n+4), n, NULL): seq(A023224(n), n=1..5000); # Wesley Ivan Hurt, Jul 08 2016
MATHEMATICA
Select[Prime[Range[300]], PrimeQ[7# + 4] &] (* Alonso del Arte, Nov 21 2018 *)
PROG
(Magma) [n: n in [0..100000] | IsPrime(n) and IsPrime(7*n+4)] // Vincenzo Librandi, Nov 19 2010
(PARI) lista(nn) = for(p=2, nn, if(isprime(7*p+4), print1(p, ", "))); \\ Altug Alkan, Jul 08 2016
CROSSREFS
Cf. A024902.
Sequence in context: A130056 A136057 A177092 * A113743 A003215 A308685
KEYWORD
nonn
STATUS
approved