login
A023094
a(n) is least k such that k and 2k are anagrams in base n (written in base 10).
4
32, 18, 8, 350, 480, 21, 104, 125874, 40, 4147, 5712, 65, 15680, 585, 96, 833, 7776, 133, 61600, 46851, 176, 63595, 2232, 225, 106288, 122931, 280, 3857, 91948380, 341, 237184, 83853, 408, 543900, 7236, 481, 8474, 431516631, 560, 622339, 683760, 645
OFFSET
3,1
COMMENTS
a(3n-1) = A000567(n). - Peter Kagey, Dec 16 2016
a(n) is divisible by n-1 for all n due to the anagram property: n and 2n are congruent modulo n-1. - Peter Kagey, Dec 23 2016
MATHEMATICA
Table[k = 1; While[! MatchQ @@ Map[Sort@ IntegerDigits[#, n] &, k {1, 2}], k++]; k, {n, 3, 30}] (* Michael De Vlieger, Dec 17 2016 *)
PROG
(PARI) a(n) = {my(k=1); while (vecsort(digits(k, n)) != vecsort(digits(2*k, n)), k++); k; } \\ Michel Marcus, Dec 17 2016
KEYWORD
nonn,base
STATUS
approved