The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022926 Number of powers of 7 between 2^n and 2^(n+1). 0
 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS FORMULA a(n) = floor(log_7 2^(n + 1)) - floor(log_7 2^n). - Alonso del Arte, Nov 04 2018 EXAMPLE Between 2^2 and 2^3 there is only one power of 7, which is 7 itself. Hence a(2) = 1. Between 2^3 and 2^4 there are no powers of 7, so a(3) = 0. MATHEMATICA Table[Floor[Log[7, 2^(n + 1)]] - Floor[Log[7, 2^n]], {n, 0, 127}] (* Alonso del Arte, Nov 04 2018 *) PROG (PARI) logint(2^(n+1), 7)-logint(2^n, 7) \\ Charles R Greathouse IV, Jan 16 2017 (MAGMA) [Floor(Log(7, 2^(n+1))) - Floor(Log(7, 2^n)): n in [0..100]]; // Vincenzo Librandi, Nov 05 2018 CROSSREFS Sequence in context: A131531 A022003 A144604 * A288520 A285177 A144595 Adjacent sequences:  A022923 A022924 A022925 * A022927 A022928 A022929 KEYWORD nonn AUTHOR EXTENSIONS Definition clarified by Alonso del Arte, Nov 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 30 19:43 EDT 2020. Contains 333127 sequences. (Running on oeis4.)