Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 May 23 2019 04:00:55
%S 4,5,6,6,7,8,7,9,10,11,8,12,8,13,9,14,15,16,10,9,17,18,11,19,20,21,10,
%T 12,22,10,23,24,13,25,26,11,27,14,28,29,30,15,11,31,12,32,33,16,34,35,
%U 36,37,17,38,13,39,40,12,18,41,42,43,12,44,19,45,14,46,47,48
%N Arrange the nontrivial binomial coefficients C(m,k) (2 <= k <= m/2) in increasing order (not removing duplicates); record the sequence of m's.
%C In case of duplicates, the m values are listed in decreasing order. Thus a(18)=16 and a(19)=10 corresponding to binomial(16,2)=binomial(10,3)=120. - _Robert Israel_, Sep 18 2018
%H Robert Israel, <a href="/A022911/b022911.txt">Table of n, a(n) for n = 1..10000</a>
%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a022/A022911.java">Java program</a> (github)
%F A319382(n) = binomial(a(n),A022912(n)). - _Robert Israel_, Sep 18 2018
%p N:= 10000: # for binomial(n,k) values <= N
%p Res:= NULL:
%p for n from 2 while n*(n-1)/2 <= N do
%p for k from 2 to n/2 do
%p v:= binomial(n,k);
%p if v > N then break fi;
%p Res:= Res,[v,n,k]
%p od od:
%p Res:= sort([Res],proc(p,q) if p[1]<>q[1] then p[1]<q[1]
%p elif p[2]<>q[2] then p[2]>q[2]
%p fi end proc):
%p map(t -> t[2], Res); # _Robert Israel_, Sep 18 2018
%Y Cf. A003015, A006987, A022912, A319382.
%K nonn
%O 1,1
%A _Clark Kimberling_