login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A022747
Expansion of 1/Product_{m>=1} (1 - m*q^m)^23.
2
1, 23, 322, 3427, 30429, 236371, 1654137, 10633291, 63665679, 358718373, 1917142690, 9779753341, 47860052964, 225631690224, 1028303816386, 4543788611823, 19515830222431, 81653870900161, 333437792190697
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 23, g(n) = n. - Seiichi Manyama, Aug 16 2023
LINKS
FORMULA
a(0) = 1; a(n) = (23/n) * Sum_{k=1..n} A078308(k) * a(n-k). - Seiichi Manyama, Aug 16 2023
CROSSREFS
Column k=23 of A297328.
Cf. A078308.
Sequence in context: A125458 A329164 A329250 * A270498 A260727 A000543
KEYWORD
nonn
STATUS
approved