login
A022380
Fibonacci sequence beginning 3, 12.
2
3, 12, 15, 27, 42, 69, 111, 180, 291, 471, 762, 1233, 1995, 3228, 5223, 8451, 13674, 22125, 35799, 57924, 93723, 151647, 245370, 397017, 642387, 1039404, 1681791, 2721195, 4402986, 7124181, 11527167, 18651348, 30178515, 48829863, 79008378
OFFSET
0,1
FORMULA
G.f.: (3+9*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = ((2^(-n-1)/5)*((15+21*sqrt(5))*(1+sqrt(5))^n + (15-21*sqrt(5))*(1-sqrt(5))^n). - Bogart B. Strauss, Oct 27 2013
a(n) = -(3/2)*(A000045(n+1)-3*A000032(n+1)). - Harvey P. Dale, Aug 22 2019
a(n) = 3*A000285(n). - R. J. Mathar, Jan 08 2020
MATHEMATICA
a[0]=3; a[1] = 12; a[n_]:= a[n-1] + a[n-2]; Table[a[n], {n, 0, 30}] (* or *) LinearRecurrence[{1, 1}, {3, 12}, 31] (* Indranil Ghosh, Feb 19 2017 *)
Table[-(3/2)(Fibonacci[n]-3*LucasL[ n]), {n, 40}] (* Harvey P. Dale, Aug 22 2019 *)
PROG
(Magma) [-(3/2)*(Fibonacci(n+1)-3*Lucas(n+1)): n in [0..40]]; // Vincenzo Librandi, Jan 09 2020
CROSSREFS
Sequence in context: A248105 A269315 A329575 * A331074 A290593 A005392
KEYWORD
nonn,easy
STATUS
approved