|
|
A022250
|
|
Gaussian binomial coefficients [ n,10 ] for q = 8.
|
|
1
|
|
|
1, 1227133513, 1338539252338766985, 1440058191955372430686340745, 1546628304496854696033468524851058313, 1660730178183390221013476379650255525660841609, 1783202253071230934395807391969095566387830751237232265
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
10,2
|
|
REFERENCES
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Product_{i=1..10} (8^(n-i+1)-1)/(8^i-1), by definition. - Vincenzo Librandi, Aug 04 2016
|
|
MATHEMATICA
|
|
|
PROG
|
(Sage) [gaussian_binomial(n, 10, 8) for n in range(10, 16)] # Zerinvary Lajos, May 27 2009
(Magma) r:=10; q:=8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 04 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|