login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022127
Fibonacci sequence beginning 3, 17.
1
3, 17, 20, 37, 57, 94, 151, 245, 396, 641, 1037, 1678, 2715, 4393, 7108, 11501, 18609, 30110, 48719, 78829, 127548, 206377, 333925, 540302, 874227, 1414529, 2288756, 3703285, 5992041, 9695326, 15687367, 25382693, 41070060, 66452753, 107522813, 173975566
OFFSET
0,1
FORMULA
G.f.: (3 + 14*x) / (1 - x - x^2). - Philippe Deléham, Nov 19 2008
From Colin Barker, Feb 21 2017: (Start)
a(n) = 2^(-1-n)*((1-sqrt(5))^n*(-31+3*sqrt(5)) + (1+sqrt(5))^n*(31+3*sqrt(5))) / sqrt(5).
a(n) = a(n-1) + a(n-2) for n>1.
(End)
MATHEMATICA
LinearRecurrence[{1, 1}, {3, 17}, 31] (* or *) CoefficientList[Series[(3+14x)/(1-x-x^2) , {x, 0, 30}], x] (* or *) a[0] = 3; a[1] = 17; a[n_]:=a[n-2]+ a[n-1]; Table[a[n], {n, 0, 30}] (* Indranil Ghosh, Feb 20 2017 *)
PROG
(PARI) Vec((3 + 14*x) / (1 - x - x^2) + O(x^30)) \\ Colin Barker, Feb 21 2017
CROSSREFS
Sequence in context: A147845 A077778 A273420 * A273448 A298469 A173579
KEYWORD
nonn,easy
STATUS
approved