login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-x)(1-2x)(1-3x)(1-8x)).
1

%I #18 Sep 08 2022 08:44:45

%S 1,14,137,1186,9789,79278,637249,5107322,40887077,327183142,

%T 2617726761,20942603058,167543199565,1340352738206,10722843363473,

%U 85782811346794,686262684222453,5490102054386070,43920818177432185,351366550647536930,2810932420866630941

%N Expansion of 1/((1-x)(1-2x)(1-3x)(1-8x)).

%H Vincenzo Librandi, <a href="/A021044/b021044.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (14,-59,94,-48).

%F a(n) = -(1/14)+(4/3)*2^n-(27/10)*3^n+(256/105)*8^n. - _Antonio Alberto Olivares_, May 12, 2012

%F a(0)=1, a(1)=14; for n>1, a(n) = 11*a(n-1) -24*a(n-2) +2^n - 1. - _Vincenzo Librandi_, Jul 05 2013

%F a(0)=1, a(1)=14, a(2)=137, a(3)=1186; for n>3, a(n) = 14*a(n-1) -59*a(n-2) +94*a(n-3) -48*a(n-4). - _Vincenzo Librandi_, Jul 05 2013

%t CoefficientList[Series[1 / ((1 - x) (1 - 2 x) (1 - 3 x) (1 - 8 x)), {x, 0, 20}], x] (* _Vincenzo Librandi_, Jul 05 2013 *)

%t LinearRecurrence[{14,-59,94,-48},{1,14,137,1186},30] (* _Harvey P. Dale_, Mar 31 2018 *)

%o (Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-2*x)*(1-3*x)*(1-8*x)))); /* or */ I:=[1, 14, 137, 1186]; [n le 4 select I[n] else 14*Self(n-1)-59*Self(n-2)+94*Self(n-3)-48*Self(n-4): n in [1..25]]; // _Vincenzo Librandi_, Jul 05 2013

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_.