login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A021044
Expansion of 1/((1-x)(1-2x)(1-3x)(1-8x)).
1
1, 14, 137, 1186, 9789, 79278, 637249, 5107322, 40887077, 327183142, 2617726761, 20942603058, 167543199565, 1340352738206, 10722843363473, 85782811346794, 686262684222453, 5490102054386070, 43920818177432185, 351366550647536930, 2810932420866630941
OFFSET
0,2
FORMULA
a(n) = -(1/14)+(4/3)*2^n-(27/10)*3^n+(256/105)*8^n. - Antonio Alberto Olivares, May 12, 2012
a(0)=1, a(1)=14; for n>1, a(n) = 11*a(n-1) -24*a(n-2) +2^n - 1. - Vincenzo Librandi, Jul 05 2013
a(0)=1, a(1)=14, a(2)=137, a(3)=1186; for n>3, a(n) = 14*a(n-1) -59*a(n-2) +94*a(n-3) -48*a(n-4). - Vincenzo Librandi, Jul 05 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - x) (1 - 2 x) (1 - 3 x) (1 - 8 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 05 2013 *)
LinearRecurrence[{14, -59, 94, -48}, {1, 14, 137, 1186}, 30] (* Harvey P. Dale, Mar 31 2018 *)
PROG
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-2*x)*(1-3*x)*(1-8*x)))); /* or */ I:=[1, 14, 137, 1186]; [n le 4 select I[n] else 14*Self(n-1)-59*Self(n-2)+94*Self(n-3)-48*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 05 2013
CROSSREFS
Sequence in context: A306301 A155625 A016296 * A338323 A121034 A374513
KEYWORD
nonn,easy
AUTHOR
STATUS
approved