login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020793 Decimal expansion of 1/6. 6
1, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Except for the first term identical to A010722, A040006 and A021019. Except for the first terms the same as A021028, A021100, A021388, A071279, A101272, A168608, A177057,... - M. F. Hasler, Oct 24 2011

Decimal expansion of gamma(1) = 5/3 (with offset 1), where gamma(n) = Cp(n)/Cv(n) = is the n-th Poisson's constant. For the definition of Cp and Cv see A272002. - Natan Arie Consigli, Jul 10 2016

LINKS

Table of n, a(n) for n=0..98.

Wikipedia, Poisson's constant.

FORMULA

a(n) = 6^n mod 10. - Zerinvary Lajos, Nov 26 2009

Equals Sum_{k>=1} 1/7^k. - Bruno Berselli, Jan 03 2014

10 * 1/6 = 5/3 = (5/2 R)/(3/2 R) = Cp(1)/Cv(1) = A272002/A272001, with R = A081822 (or A070064). - Natan Arie Consigli, Jul 10 2016

G.f.: (1 + 5*x)/(1 - x). - Ilya Gutkovskiy, Jul 10 2016

Equals Sum_{k>=1} 1/(k*Pi)^2. - Maciej Kaniewski, Sep 14 2017

Equals Sum_{k>=1} (zeta(2*k)-1)/4^k. - Amiram Eldar, Jun 08 2021

MATHEMATICA

RealDigits[1/6, 10, 120][[1]] (* or *) PadRight[{1}, 120, {6}] (* Harvey P. Dale, Dec 30 2018 *)

PROG

(PARI) a(n)=6-5*!n \\ M. F. Hasler, Oct 24 2011

CROSSREFS

Sequence in context: A165057 A165059 A010722 * A021019 A177057 A082510

Adjacent sequences: A020790 A020791 A020792 * A020794 A020795 A020796

KEYWORD

nonn,cons,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 12:22 EDT 2023. Contains 361599 sequences. (Running on oeis4.)