login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020721
Pisot sequences E(7,10), P(7,10).
2
7, 10, 14, 20, 29, 42, 61, 89, 130, 190, 278, 407, 596, 873, 1279, 1874, 2746, 4024, 5897, 8642, 12665, 18561, 27202, 39866, 58426, 85627, 125492, 183917, 269543, 395034, 578950, 848492, 1243525, 1822474, 2670965, 3914489, 5736962, 8407926, 12322414, 18059375
OFFSET
0,1
LINKS
Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT], 2016.
FORMULA
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (7-4*x+x^2-5*x^3) / ((1-x)*(1-x-x^3)). - Colin Barker, Jun 05 2016
Theorem: E(7,10) satisfies a(n) = 2 a(n - 1) - a(n - 2) + a(n - 3) - a(n - 4) for n>=4. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger. This shows that the above conjectures are correct. - N. J. A. Sloane, Sep 10 2016
a(n) = A020711(n+1). - Jinyuan Wang, Mar 10 2020
Empirical formula: a(n) = a(n-1) + a(n-3) - 1. - Greg Dresden, May 18 2020
MATHEMATICA
RecurrenceTable[{a[0]==7, a[1]==10, a[n]== Floor[a[n-1]^2/a[n-2] +1/2]}, a, {n, 0, 50}] (* Bruno Berselli, Feb 05 2016 *)
PROG
(Magma) Exy:=[7, 10]; [n le 2 select Exy[n] else Floor(Self(n-1)^2/Self(n-2) + 1/2): n in [1..50]]; // Bruno Berselli, Feb 05 2016
(PARI) Vec((7-4*x+x^2-5*x^3)/((1-x)*(1-x-x^3)) + O(x^40)) \\ Jinyuan Wang, Mar 10 2020
CROSSREFS
Subsequence of A020711.
See A008776 for definitions of Pisot sequences.
Cf. A048626.
Sequence in context: A134302 A229306 A023485 * A015782 A336089 A154681
KEYWORD
nonn
STATUS
approved