login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020718
Pisot sequences E(6,10), P(6,10).
1
6, 10, 17, 29, 49, 83, 141, 240, 409, 697, 1188, 2025, 3452, 5885, 10033, 17105, 29162, 49718, 84764, 144514, 246382, 420057, 716156, 1220976, 2081645, 3549002, 6050703, 10315860, 17587538, 29985042, 51121581, 87157325, 148594765, 253339627, 431919433
OFFSET
0,1
LINKS
Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT], 2016.
FORMULA
G.f.: (-4*x^5+x^4+x^3-3*x^2-2*x+6)/((1-x)*(1-x-x^2-x^5)) (conjectured). - Ralf Stephan, May 12 2004
a(n) = 2*a(n-1)-a(n-3)+a(n-5)-a(n-6) for n>5 (conjectured). - Colin Barker, Jun 05 2016
Theorem: E(6,10) satisfies a(n) = 2 a(n - 1) - a(n - 3) + a(n - 5) - a(n - 6) for n >= 6. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger. This shows that the above conjectures are correct. - N. J. A. Sloane, Sep 10 2016
MATHEMATICA
LinearRecurrence[{2, 0, -1, 0, 1, -1}, {6, 10, 17, 29, 49, 83}, 30] (* Jinyuan Wang, Mar 10 2020 *)
CROSSREFS
See A008776 for definitions of Pisot sequences.
Sequence in context: A315357 A315358 A049302 * A048587 A351661 A379166
KEYWORD
nonn
STATUS
approved