login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203).
93

%I #105 Aug 12 2024 12:02:14

%S 1,2,3,6,12,14,15,30,35,42,56,70,78,105,140,168,190,210,248,264,270,

%T 357,418,420,570,594,616,630,714,744,812,840,910,1045,1240,1254,1485,

%U 1672,1848,2090,2214,2376,2436,2580,2730,2970,3080,3135,3339,3596,3720,3828

%N Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203).

%C The quotient A020492(n)/A002088(n) = SummatorySigma/SummatoryTotient as n increases seems to approach Pi^4/36 or zeta(2)^2 [~2.705808084277845]. - _Labos Elemer_, Sep 20 2004, corrected by _Charles R Greathouse IV_, Jun 20 2012

%C If 2^p-1 is prime (a Mersenne prime) then m = 2^(p-2)*(2^p-1) is in the sequence because when p = 2 we get m = 3 and phi(3) divides sigma(3) and for p > 2, phi(m) = 2^(p-2)*(2^(p-1)-1); sigma(m) = (2^(p-1)-1)*2^p hence sigma(m)/phi(m) = 4 is an integer. So for each n, A133028(n) = 2^(A000043(n)-2)*(2^A000043(n)-1) is in the sequence. - _Farideh Firoozbakht_, Nov 28 2005

%C Phi and sigma are both multiplicative functions and for this reason if m and n are coprime and included in this sequence then m*n is also in this sequence. - _Enrique Pérez Herrero_, Sep 05 2010

%C The quotients sigma(n)/phi(n) are in A023897. - _Bernard Schott_, Jun 06 2017

%C There are 544768 balanced numbers < 10^14. - _Jud McCranie_, Sep 10 2017

%C a(975807) = 419998185095132. - _Jud McCranie_, Nov 28 2017

%D D. Chiang, "N's for which phi(N) divides sigma(N)", Mathematical Buds, Chap. VI pp. 53-70 Vol. 3 Ed. H. D. Ruderman, Mu Alpha Theta 1984.

%H Donovan Johnson, <a href="/A020492/b020492.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)

%H Jud McCranie, <a href="/A020492/a020492.txt">670314 balanced numbers</a> (first 1000 from T. D. Noe, first 10000 from Donovan Johnson)

%e sigma(35) = 1+5+7+35 = 48, phi(35) = 24, hence 35 is a term.

%t Select[ Range[ 4000 ], IntegerQ[ DivisorSigma[ 1, # ]/EulerPhi[ # ] ]& ]

%t (* Second program: *)

%t Select[Range@ 4000, Divisible[DivisorSigma[1, #], EulerPhi@ #] &] (* _Michael De Vlieger_, Nov 28 2017 *)

%o (Magma) [ n: n in [1..3900] | SumOfDivisors(n) mod EulerPhi(n) eq 0 ]; // _Klaus Brockhaus_, Nov 09 2008

%o (PARI) select(n->sigma(n)%eulerphi(n)==0,vector(10^4,i,i)) \\ _Charles R Greathouse IV_, Jun 20 2012

%o (Python)

%o from sympy import totient, divisor_sigma

%o print([n for n in range(1, 4001) if divisor_sigma(n)%totient(n)==0]) # _Indranil Ghosh_, Jul 06 2017

%o (Python)

%o from math import prod

%o from itertools import count, islice

%o from sympy import factorint

%o def A020492_gen(startvalue=1): # generator of terms >= startvalue

%o for m in count(max(startvalue,1)):

%o f = factorint(m)

%o if not prod(p**(e+2)-p for p,e in f.items())%(m*prod((p-1)**2 for p in f)):

%o yield m

%o A020492_list = list(islice(A020492_gen(),20)) # _Chai Wah Wu_, Aug 12 2024

%Y Cf. A000010, A000043, A000203, A000668, A011257, A023897, A133028, A291565, A291566, A292422, A351114 (characteristic function).

%Y Positions of 0's in A063514.

%K nonn

%O 1,2

%A _David W. Wilson_

%E More terms from _Farideh Firoozbakht_, Nov 28 2005