login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of singular 2 X 2 matrices over Z(n) (i.e., with determinant = 0).
6

%I #40 Oct 22 2020 02:52:44

%S 1,10,33,88,145,330,385,736,945,1450,1441,2904,2353,3850,4785,6016,

%T 5185,9450,7201,12760,12705,14410,12673,24288,18625,23530,26001,33880,

%U 25201,47850,30721,48640,47553,51850,55825,83160,51985,72010,77649,106720

%N Number of singular 2 X 2 matrices over Z(n) (i.e., with determinant = 0).

%H Amiram Eldar, <a href="/A020478/b020478.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from T. D. Noe)

%F From _Vladeta Jovovic_, Apr 22 2002: (Start)

%F a(n) = n^4 - A005353(n).

%F Multiplicative with a(p^e) = p^(2*e - 1)*(p^(e+1) + p^e - 1). (End)

%F Dirichlet g.f.: zeta(s-2)*zeta(s-3)/zeta(s-1).

%F A102631(n) | a(n). - _R. J. Mathar_, Mar 30 2011

%F Sum_{k=1..n} a(k) ~ Pi^2 * n^4 / (24*Zeta(3)). - _Vaclav Kotesovec_, Jan 31 2019

%F From _Piotr Rysinski_, Sep 11 2020: (Start)

%F a(n) = n * A069097(n).

%F Proof: a(n) is multiplicative with a(p^e) = p^(2*e - 1)*(p^(e+1) + p^e - 1), A069097(n) is multiplicative with A069097(p^e) = p^(e-1)*(p^e*(p+1)-1), so a(p^e) = p^e*A069097(p^e). (End)

%t f[p_, e_] := p^(2*e - 1)*(p^(e + 1) + p^e - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 22 2020 *)

%o (PARI) a(n)=if(n<1, 0, direuler(p=2, n, (1-p*X)/((1-p^2*X)*(1-p^3*X)))[n])

%o (PARI) a(n)=local(c=0); forvec(x=vector(4,k,[1,n]),c+=((x[1]*x[2]-x[3]*x[4])%n==0)); c

%Y Cf. A005353, A059306, A062801, A069097, A102631, A240547.

%K nonn,mult,easy

%O 1,2

%A _David W. Wilson_