login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020478
Number of singular 2 X 2 matrices over Z(n) (i.e., with determinant = 0).
6
1, 10, 33, 88, 145, 330, 385, 736, 945, 1450, 1441, 2904, 2353, 3850, 4785, 6016, 5185, 9450, 7201, 12760, 12705, 14410, 12673, 24288, 18625, 23530, 26001, 33880, 25201, 47850, 30721, 48640, 47553, 51850, 55825, 83160, 51985, 72010, 77649, 106720
OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
FORMULA
From Vladeta Jovovic, Apr 22 2002: (Start)
a(n) = n^4 - A005353(n).
Multiplicative with a(p^e) = p^(2*e - 1)*(p^(e+1) + p^e - 1). (End)
Dirichlet g.f.: zeta(s-2)*zeta(s-3)/zeta(s-1).
A102631(n) | a(n). - R. J. Mathar, Mar 30 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n^4 / (24*Zeta(3)). - Vaclav Kotesovec, Jan 31 2019
From Piotr Rysinski, Sep 11 2020: (Start)
a(n) = n * A069097(n).
Proof: a(n) is multiplicative with a(p^e) = p^(2*e - 1)*(p^(e+1) + p^e - 1), A069097(n) is multiplicative with A069097(p^e) = p^(e-1)*(p^e*(p+1)-1), so a(p^e) = p^e*A069097(p^e). (End)
MATHEMATICA
f[p_, e_] := p^(2*e - 1)*(p^(e + 1) + p^e - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 22 2020 *)
PROG
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, (1-p*X)/((1-p^2*X)*(1-p^3*X)))[n])
(PARI) a(n)=local(c=0); forvec(x=vector(4, k, [1, n]), c+=((x[1]*x[2]-x[3]*x[4])%n==0)); c
CROSSREFS
KEYWORD
nonn,mult,easy
STATUS
approved