login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020346
Expansion of 1/((1-5x)(1-8x)(1-10x)).
4
1, 23, 359, 4747, 57351, 655683, 7229839, 77760587, 821694071, 8571599443, 88563029919, 908455411227, 9267399149191, 94137972490403, 953097676407599, 9624750893682667, 96997854561570711, 975982073553112563
OFFSET
0,2
FORMULA
a(n) = 5^(n+1)/3 -4*8^(n+1)/3+10^(n+1). - R. J. Mathar, Mar 15 2011
a(0)=1, a(1)=23, a(2)=359; for n>2, a(n) = 23*a(n-1) -170*a(n-2) +400*a(n-3). - Vincenzo Librandi, Jul 03 2013
a(n) = 18*a(n-1) -80*a(n-2) +5^n. - Vincenzo Librandi, Jul 03 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - 5 x) (1 - 8 x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 03 2013 *)
PROG
(PARI) a(n) = 5^(n+1)/3-32*8^n/3+10^(n+1) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-5*x)*(1-8*x)*(1-10*x)))); /* or */ I:=[1, 23, 359]; [n le 3 select I[n] else 23*Self(n-1)-170*Self(n-2)+400*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 03 2013
CROSSREFS
Sequence in context: A020572 A021884 A101792 * A025964 A180361 A021684
KEYWORD
nonn,easy
AUTHOR
STATUS
approved