login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020142
Pseudoprimes to base 14.
2
15, 39, 65, 195, 481, 561, 781, 793, 841, 985, 1105, 1111, 1541, 1891, 2257, 2465, 2561, 2665, 2743, 3277, 5185, 5713, 6501, 6533, 6541, 7107, 7171, 7449, 7543, 7585, 8321, 9073, 10585, 12403, 12505, 12545, 12805, 12871, 13429, 14111, 14689, 15067, 15457
OFFSET
1,1
COMMENTS
Composite numbers n such that 14^(n-1) == 1 (mod n). - Michel Lagneau, Feb 18 2012
MAPLE
select(t -> not isprime(t) and 14 &^ (t-1) mod t = 1, [seq(i, i=3..20000, 2)]); # Robert Israel, Jun 12 2018
MATHEMATICA
pseudos14 = {}; n = 1; While[Length[pseudos14] < 100, n++; If[!PrimeQ[n] && PowerMod[14, n - 1, n] == 1, AppendTo[pseudos14, n]]]; pseudos14 (* T. D. Noe, Feb 21 2012 *)
CROSSREFS
Cf. A001567 (pseudoprimes to base 2).
Sequence in context: A055131 A121051 A139042 * A146696 A186295 A259429
KEYWORD
nonn
STATUS
approved