The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020000 Expansion of 1/((1-5x)(1-7x)(1-11x)). 4
 1, 23, 362, 4870, 60411, 715533, 8243572, 93366380, 1046230421, 11644889443, 129058033182, 1426436938290, 15738640474831, 173461105001753, 1910430676985192, 21031277618176600, 231459987587209641 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (23,-167,385) FORMULA a(n) = 5^(n+2)/12+11^(n+2)/24-7^(n+2)/8. - R. J. Mathar, Mar 15 2011 a(0)=1, a(1)=23, a(2)=362; for n>2, a(n) = 23*a(n-1) -167*a(n-2) +385*a(n-3). - Vincenzo Librandi, Jul 03 2013 a(n) = 18*a(n-1) -77*a(n-2) +5^n. - Vincenzo Librandi, Jul 03 2013 MATHEMATICA CoefficientList[Series[1 / ((1 - 5 x) (1 - 7 x) (1 - 11 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 03 2013 *) PROG (PARI) Vec(1/((1-5*x)*(1-7*x)*(1-11*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012 (MAGMA) m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-5*x)*(1-7*x)*(1-11*x)))); /* or */ I:=[1, 23, 362]; [n le 3 select I[n] else 23*Self(n-1)-167*Self(n-2)+385*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 03 2013 CROSSREFS Sequence in context: A021684 A077515 A025942 * A021664 A202666 A019682 Adjacent sequences:  A019997 A019998 A019999 * A020001 A020002 A020003 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 23:53 EST 2020. Contains 338920 sequences. (Running on oeis4.)