login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Powers of cube root of 17 rounded up.
23

%I #22 Sep 08 2022 08:44:44

%S 1,3,7,17,44,113,289,744,1911,4913,12633,32483,83521,214757,552199,

%T 1419857,3650853,9387369,24137569,62064487,159585273,410338673,

%U 1055096276,2712949631,6975757441,17936636689,46120143717,118587876497,304922823712

%N Powers of cube root of 17 rounded up.

%H Vincenzo Librandi, <a href="/A018026/b018026.txt">Table of n, a(n) for n = 0..200</a>

%p Digits:= 1000:

%p a:= n-> ceil(17^(n/3)):

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Nov 23 2013

%t Table[Ceiling[17^(n/3)], {n, 0, 40}] (* _Vincenzo Librandi_, Jan 10 2014 *)

%o (PARI) a(n) = if (n % 3, ceil((17^(1/3))^n), 17^(n/3)); \\ _Michel Marcus_, Nov 23 2013

%o (Magma) [Ceiling(17^(n/3)): n in [0..40]]; // _Vincenzo Librandi_, Jan 10 2014

%Y Cf. A010589, A018024, A018025, and powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), A018005 (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), this sequence (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

%K nonn

%O 0,2

%A _N. J. A. Sloane_