login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A018026
Powers of cube root of 17 rounded up.
23
1, 3, 7, 17, 44, 113, 289, 744, 1911, 4913, 12633, 32483, 83521, 214757, 552199, 1419857, 3650853, 9387369, 24137569, 62064487, 159585273, 410338673, 1055096276, 2712949631, 6975757441, 17936636689, 46120143717, 118587876497, 304922823712
OFFSET
0,2
LINKS
MAPLE
Digits:= 1000:
a:= n-> ceil(17^(n/3)):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 23 2013
MATHEMATICA
Table[Ceiling[17^(n/3)], {n, 0, 40}] (* Vincenzo Librandi, Jan 10 2014 *)
PROG
(PARI) a(n) = if (n % 3, ceil((17^(1/3))^n), 17^(n/3)); \\ Michel Marcus, Nov 23 2013
(Magma) [Ceiling(17^(n/3)): n in [0..40]]; // Vincenzo Librandi, Jan 10 2014
CROSSREFS
Cf. A010589, A018024, A018025, and powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), A018005 (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), this sequence (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).
Sequence in context: A294129 A308589 A018025 * A087953 A210839 A261235
KEYWORD
nonn
STATUS
approved