The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A017906 Expansion of 1/(1 - x^12 - x^13 - ...). 4
 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 18, 22, 27, 33, 40, 48, 57, 67, 78, 90, 103, 118, 136, 158, 185, 218, 258, 306, 363, 430, 508, 598, 701, 819, 955, 1113, 1298, 1516, 1774 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,25 COMMENTS a(n) = number of compositions of n in which each part is >=12. - Milan Janjic, Jun 28 2010 a(n+23) equals the number of binary words of length n having at least 11 zeros between every two successive ones. - Milan Janjic, Feb 09 2015 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 I. M. Gessel, Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5 Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). FORMULA G.f.: (x-1)/(x-1+x^12). - Alois P. Heinz, Aug 04 2008 For positive integers n and k such that k <= n <= 12*k, and 11 divides n-k, define c(n,k) = binomial(k,(n-k)/11), and c(n,k) = 0, otherwise. Then, for n>=1, a(n+12) = sum(c(n,k), k=1..n). - Milan Janjic, Dec 09 2011 MAPLE a:= n-> (Matrix(12, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [1, 0\$10, 1][i], 0)))^n)[12, 12]: seq(a(n), n=0..60); # Alois P. Heinz, Aug 04 2008 MATHEMATICA LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *) CoefficientList[Series[(x - 1) / (x - 1 + x^12), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 01 2013 *) PROG (PARI) Vec((x-1)/(x-1+x^12)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012 CROSSREFS Sequence in context: A269445 A330513 A246092 * A159452 A044963 A044825 Adjacent sequences: A017903 A017904 A017905 * A017907 A017908 A017909 KEYWORD nonn,easy AUTHOR N. J. A. Sloane. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 12:42 EDT 2024. Contains 375021 sequences. (Running on oeis4.)