login
A017763
a(n) = binomial coefficient C(n,99).
6
1, 100, 5050, 171700, 4421275, 91962520, 1609344100, 24370067800, 325949656825, 3911395881900, 42634215112710, 426342151127100, 3943664897925675, 33976189889821200, 274236389824985400
OFFSET
99,2
LINKS
FORMULA
From G. C. Greubel, Nov 12 2018: (Start)
G.f.: x^99/(1-x)^100.
E.g.f.: x^99*exp(x)/99!. (End)
From Amiram Eldar, Dec 20 2020: (Start)
Sum_{n>=99} 1/a(n) = 99/98.
Sum_{n>=99} (-1)^(n+1)/a(n) = A001787(99)*log(2) - A242091(99)/98! = 31374352355648677687043404333056*log(2) - 1914409165727592211172313915606888772651389180584205416988817447627229 / 88030776805192521672391172898121595400 = 0.9901924115... (End)
MATHEMATICA
Table[Binomial[n, 99], {n, 99, 5!}] (* Vladimir Joseph Stephan Orlovsky, Dec 25 2008 *)
PROG
(Sage) [binomial(n, 99) for n in range(99, 114)] # Zerinvary Lajos, May 23 2009
(PARI) a(n)=binomial(n, 99) \\ Charles R Greathouse IV, Jun 28 2012
(Magma) [Binomial(n, 99): n in [99..120]]; // G. C. Greubel, Nov 12 2018
CROSSREFS
Sequence in context: A250699 A035745 A035810 * A204081 A053109 A151647
KEYWORD
nonn,easy
STATUS
approved