login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 6*n + 5.
76

%I #135 Nov 24 2022 05:22:04

%S 5,11,17,23,29,35,41,47,53,59,65,71,77,83,89,95,101,107,113,119,125,

%T 131,137,143,149,155,161,167,173,179,185,191,197,203,209,215,221,227,

%U 233,239,245,251,257,263,269,275,281,287,293,299,305,311,317,323,329,335

%N a(n) = 6*n + 5.

%C Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(18).

%C Exponents e such that x^e + x - 1 is reducible.

%C First differences of A141631. - _Paul Curtz_, Sep 12 2008

%C a(n-1), n >= 1, appears as first column in the triangle A239127 related to the Collatz problem. - _Wolfdieter Lang_, Mar 14 2014

%C Odd unlucky numbers in A050505. - _Fred Daniel Kline_, Feb 25 2017

%C Intersection of A005408 and A016789. - _Bruno Berselli_, Apr 26 2018

%C Numbers that are not divisible by their digital root in base 4. - _Amiram Eldar_, Nov 24 2022

%H Muniru A Asiru, <a href="/A016969/b016969.txt">Table of n, a(n) for n = 0..3000</a>

%H Mark W. Coffey, <a href="http://arxiv.org/abs/1601.01673">Bernoulli identities, zeta relations, determinant expressions, Mellin transforms, and representation of the Hurwitz numbers</a>, arXiv:1601.01673 [math.NT], 2016.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=949">Encyclopedia of Combinatorial Structures 949</a>.

%H D. H. Lehmer, <a href="http://www.jstor.org/stable/1968647">Lacunary recurrence formulas for the numbers of Bernoulli and Euler</a>, Annals Math., Vol. 36, No. 3 (1935), pp. 637-649.

%H Amelia Carolina Sparavigna, <a href="https://doi.org/10.5281/zenodo.4641886">The Pentagonal Numbers and their Link to an Integer Sequence which contains the Primes of Form 6n-1</a>, Politecnico di Torino (Italy, 2021).

%H Amelia Carolina Sparavigna, <a href="https://doi.org/10.5281/zenodo.4662489">Binary operations inspired by generalized entropies applied to figurate numbers</a>, Politecnico di Torino (Italy, 2021).

%H William A. Stein, <a href="http://wstein.org/Tables/dimskg0n.gp">Dimensions of the spaces S_k(Gamma_0(N))</a>.

%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>.

%H Leo Tavares, <a href="/A016969/a016969.jpg">Illustration: Twin Triangular Frames</a>.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F a(n) = A003415(A003415(A125200(n+1)))/2. - _Reinhard Zumkeller_, Nov 24 2006

%F A008615(a(n)) = n+1. - _Reinhard Zumkeller_, Feb 27 2008

%F a(n) = A007310(2*n+1); complement of A016921 with respect to A007310. - _Reinhard Zumkeller_, Oct 02 2008

%F From _Klaus Brockhaus_, Jan 04 2009: (Start)

%F G.f.: (5+x)/(1-x)^2.

%F a(0) = 5; for n > 0, a(n) = a(n-1)+6.

%F (End)

%F a(n) = A016921(n)+4 = A016933(n)+3 = A016945(n)+2 = A016957(n)+1. - _Klaus Brockhaus_, Jan 04 2009

%F a(n) = floor((12n-1)/2) with offset 1..a(1)=5. - _Gary Detlefs_, Mar 07 2010

%F a(n) = 4*(3*n+1) - a(n-1) (with a(0) = 5). - _Vincenzo Librandi_, Nov 20 2010

%F a(n) = floor(1/(1/sin(1/n) - n)). - _Clark Kimberling_, Feb 19 2010

%F a(n) = 3*Sum_{k = 0..n} binomial(6*n+5, 6*k+2)*Bernoulli(6*k+2). - _Michel Marcus_, Jan 11 2016

%F a(n) = A049452(n+1) / (n+1). - _Torlach Rush_, Nov 23 2018

%F a(n) = 2*A000217(n+2) - 1 - 2*A000217(n-1). See Twin Triangular Frames illustration. - _Leo Tavares_, Aug 25 2021

%F Sum_{n>=0} (-1)^n/a(n) = Pi/6 - sqrt(3)*arccoth(sqrt(3))/3. - _Amiram Eldar_, Dec 10 2021

%t 6Range[0, 59] + 5 (* or *) NestList[6 + # &, 5, 60] (* _Harvey P. Dale_, Mar 09 2013 *)

%o (Magma) [ 6*n+5: n in [0..55] ]; // _Klaus Brockhaus_, Jan 04 2009

%o (PARI) a(n)=6*n+5 \\ _Charles R Greathouse IV_, Jul 10 2016

%o (Scala) (1 to 60).map(6 * _ - 1).mkString(", ") // _Alonso del Arte_, Nov 23 2018

%o (GAP) List([0..60],n->6*n+5); # _Muniru A Asiru_, Nov 24 2018

%Y Cf. A111863, A007310, A008588, A016921, A016933, A016945, A016957, A049452.

%Y Cf. A050505 (unlucky numbers).

%Y Cf. A000217.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_

%E More terms from _Klaus Brockhaus_, Jan 04 2009