login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016808
a(n) = (4n)^8.
1
0, 65536, 16777216, 429981696, 4294967296, 25600000000, 110075314176, 377801998336, 1099511627776, 2821109907456, 6553600000000, 14048223625216, 28179280429056, 53459728531456, 96717311574016, 167961600000000, 281474976710656, 457163239653376
OFFSET
0,2
FORMULA
a(0)=0, a(1)=65536, a(2)=16777216, a(3)=429981696, a(4)=4294967296, a(5)=25600000000, a(6)=110075314176, a(7)=377801998336, a(8)=1099511627776, a(n)=9*a(n-1)-36*a(n-2)+ 84*a(n-3)- 126*a(n-4)+126*a(n-5)-84*a(n-6)+ 36*a(n-7)- 9*a(n-8)+a(n-9). - Harvey P. Dale, Aug 05 2013
G.f.: 65536*(x + 247*x^2 + 4293*x^3 + 15619*x^4 + 15619*x^5 + 4293*x^6 + 247*x^7 + x^8)/(1 - x)^9. - Wesley Ivan Hurt, Mar 18 2015
a(n) = A001016(A008586(n)). - Michel Marcus, Mar 18 2015
MAPLE
A016808:=n->(4*n)^8: seq(A016808(n), n=0..30); # Wesley Ivan Hurt, Mar 18 2015
MATHEMATICA
(4*Range[0, 20])^8 (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 65536, 16777216, 429981696, 4294967296, 25600000000, 110075314176, 377801998336, 1099511627776}, 20] (* Harvey P. Dale, Aug 05 2013 *)
CoefficientList[Series[65536 (x + 247 x^2 + 4293 x^3 + 15619 x^4 + 15619 x^5 + 4293 x^6 + 247 x^7 + x^8) / (1 - x)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 18 2015 *)
PROG
(Magma) [(4*n)^8: n in [0..30]]; // Vincenzo Librandi, Mar 18 2015
CROSSREFS
Cf. A001016 (n^8), A008586 (4*n).
Sequence in context: A255667 A242323 A016784 * A175924 A016904 A017696
KEYWORD
nonn,easy
STATUS
approved