login
A016808
a(n) = (4n)^8.
1
0, 65536, 16777216, 429981696, 4294967296, 25600000000, 110075314176, 377801998336, 1099511627776, 2821109907456, 6553600000000, 14048223625216, 28179280429056, 53459728531456, 96717311574016, 167961600000000, 281474976710656, 457163239653376
OFFSET
0,2
FORMULA
a(0)=0, a(1)=65536, a(2)=16777216, a(3)=429981696, a(4)=4294967296, a(5)=25600000000, a(6)=110075314176, a(7)=377801998336, a(8)=1099511627776, a(n)=9*a(n-1)-36*a(n-2)+ 84*a(n-3)- 126*a(n-4)+126*a(n-5)-84*a(n-6)+ 36*a(n-7)- 9*a(n-8)+a(n-9). - Harvey P. Dale, Aug 05 2013
G.f.: 65536*(x + 247*x^2 + 4293*x^3 + 15619*x^4 + 15619*x^5 + 4293*x^6 + 247*x^7 + x^8)/(1 - x)^9. - Wesley Ivan Hurt, Mar 18 2015
a(n) = A001016(A008586(n)). - Michel Marcus, Mar 18 2015
MAPLE
A016808:=n->(4*n)^8: seq(A016808(n), n=0..30); # Wesley Ivan Hurt, Mar 18 2015
MATHEMATICA
(4*Range[0, 20])^8 (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 65536, 16777216, 429981696, 4294967296, 25600000000, 110075314176, 377801998336, 1099511627776}, 20] (* Harvey P. Dale, Aug 05 2013 *)
CoefficientList[Series[65536 (x + 247 x^2 + 4293 x^3 + 15619 x^4 + 15619 x^5 + 4293 x^6 + 247 x^7 + x^8) / (1 - x)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 18 2015 *)
PROG
(Magma) [(4*n)^8: n in [0..30]]; // Vincenzo Librandi, Mar 18 2015
CROSSREFS
Cf. A001016 (n^8), A008586 (4*n).
Sequence in context: A255667 A242323 A016784 * A175924 A016904 A017696
KEYWORD
nonn,easy
STATUS
approved