login
A015245
a(n) = (2*n - 11)*n^2.
1
0, -9, -28, -45, -48, -25, 36, 147, 320, 567, 900, 1331, 1872, 2535, 3332, 4275, 5376, 6647, 8100, 9747, 11600, 13671, 15972, 18515, 21312, 24375, 27716, 31347, 35280, 39527, 44100, 49011, 54272, 59895
OFFSET
0,2
FORMULA
G.f.: x*(-9 + 8*x + 13*x^2)/(1-x)^4. - Ivan Panchenko, Nov 09 2013
From G. C. Greubel, Jul 30 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: x*(-9 - 5*x + 2*x^2)*exp(x). (End)
MATHEMATICA
Table[(2*n - 11)*n^2, {n, 0, 25}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, -9, -28, -45}, 25] (* G. C. Greubel, Jul 30 2016 *)
PROG
(PARI) a(n)=(2*n-11)*n^2 \\ Charles R Greathouse IV, Jul 30 2016
CROSSREFS
Sequence in context: A124360 A041152 A246750 * A031308 A063155 A366863
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved