login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014781
Seidel's triangle, read by rows.
3
1, 1, 1, 1, 2, 1, 2, 3, 3, 8, 6, 3, 8, 14, 17, 17, 56, 48, 34, 17, 56, 104, 138, 155, 155, 608, 552, 448, 310, 155, 608, 1160, 1608, 1918, 2073, 2073, 9440, 8832, 7672, 6064, 4146, 2073, 9440, 18272, 25944, 32008, 36154, 38227
OFFSET
1,5
COMMENTS
Named after the German mathematician Philipp Ludwig von Seidel (1821-1896). - Amiram Eldar, Jun 13 2021
REFERENCES
Qiongqiong Pan and Jiang Zeng, Cycles of even-odd drop permutations and continued fractions of Genocchi numbers, arXiv:2108.03200 [math.CO], 2021.
LINKS
Dominique Dumont and Arthur Randrianarivony, Dérangements et nombres de Genocchi, Discrete Math., Vol. 132, No. 1-3 (1994), pp. 37-49.
Dominique Dumont and Jiang Zeng, Polynomes d'Euler et fractions continues de Stieltjes-Rogers, The Ramanujan Journal, Vol. 2, No. 3 (1998), pp. 387-410; alternative link.
Richard Ehrenborg and Einar Steingrímsson, Yet another triangle for the Genocchi numbers, European J. Combin., Vol. 21, No. 5 (2000), pp. 593-600. MR1771988 (2001h:05008).
Evgeny Feigin, The median Genocchi numbers, q-analogues and continued fractions, European Journal of Combinatorics, Vol. 33, No. 8 (2012), pp. 1913-1918; arXiv preprint, arXiv:1111.0740 [math.CO], 2011-2012.
Guo-Niu Han and Jiang Zeng, On a q-sequence that generalizes the median Genocchi numbers, Annal Sci. Math. Québec, Vol. 23, No. 1 (1999), pp. 63-72.
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, Vol. 7 (1877), pp. 157-187.
EXAMPLE
Triangle begins:
1;
1;
1, 1;
2, 1;
2, 3, 3;
8, 6, 3;
8, 14, 17, 17;
56, 48, 34, 17;
56, 104, 138, 155, 155;
608, 552, 448, 310, 155;
608, 1160, 1608, 1918, 2073, 2073;
9440, 8832, 7672, 6064, 4146, 2073;
...
MATHEMATICA
max = 13; T[1, 1] = 1; T[n_, k_] /; 1 <= k <= (n+1)/2 := T[n, k] = If[EvenQ[n], Sum[T[n-1, i], {i, k, max}], Sum[T[n-1, i], {i, 1, k}]]; T[_, _] = 0; Table[T[n, k], {n, 1, max}, {k, 1, (n+1)/2}] // Flatten (* Jean-François Alcover, Nov 18 2016 *)
PROG
(SageMath) # Algorithm of L. Seidel (1877)
# n -> Prints first n rows of the triangle
def A014781_triangle(n) :
D = []; [D.append(0) for i in (0..n)]; D[1] = 1
b = True
for i in(0..n) :
h = (i-1)//2 + 1
if b :
for k in range(h-1, 0, -1) : D[k] += D[k+1]
else :
for k in range(1, h+1, 1) : D[k] += D[k-1]
b = not b
if i>0 : print [D[z] for z in (1..h)]
A014781_triangle(12) # Peter Luschny, Apr 01 2012
CROSSREFS
Even terms of first column give A005439. Diagonal gives A001469.
Sequence in context: A022876 A242692 A316231 * A214500 A066016 A098068
KEYWORD
tabf,nonn
EXTENSIONS
More terms from Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 18 2001
STATUS
approved