login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014662
Primes p such that order of 2 mod p (=A007733(p)) is even.
7
3, 5, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 83, 97, 101, 107, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, 211, 227, 229, 241, 251, 257, 269, 277, 281, 283, 293, 307, 313, 317, 331, 347, 349, 353, 373, 379, 389, 397, 401, 409, 419
OFFSET
1,1
COMMENTS
Apart from the first term, identical to A091317. - Charles R Greathouse IV, Feb 13 2009
Dirichlet density is 5/24 (Fein, Gordon, & Smith); they show a result on expressing -1 as the sum of two squares relating to this sequence. - Charles R Greathouse IV, May 15 2024
REFERENCES
P. Moree, Appendix to V. Pless et al., Cyclic Self-Dual Z_4 Codes, Finite Fields Applic., vol. 3 pp. 48-69, 1997.
LINKS
Burton Fein, Basil Gordon, and John H. Smith, On the representation of -1 as a sum of two squares in an algebraic number field J. Num. Theor. (1971) Vol. 3, Issue 3, 310-315.
Eugen J. Ionascu, Florian Luca, and Thomas Merino, On the average value of the minimal Hamming multiple, arXiv:2412.10839 [math.NT], 2024. See pp. 4, 17.
MAPLE
select(t -> isprime(t) and numtheory:-order(2, t)::even, [2*i+1 $ i=1..1000]); # Robert Israel, Aug 12 2014
MATHEMATICA
Select[Prime[Range[80]], EvenQ[MultiplicativeOrder[2, #/(2^IntegerExponent[ #, 2])]]&] (* Jean-François Alcover, Sep 02 2018 *)
PROG
(Magma) [ p: p in PrimesInInterval(3, 419) | IsEven(Modorder(2, p)) ]; // Klaus Brockhaus, Dec 09 2008
(PARI) isok(p) = isprime(p) && !(znorder(Mod(2, p/2^valuation(p, 2))) % 2); \\ Michel Marcus, Sep 02 2018
(PARI) is(n)=n>2 && Mod(2, n)^(n>>valuation(n-1, 2))!=1 && isprime(n) \\ Charles R Greathouse IV, May 07 2024
CROSSREFS
The prime terms of A296243.
Cf. A091317.
Sequence in context: A059315 A045403 A059641 * A059349 A045316 A040100
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Klaus Brockhaus, Dec 09 2008
STATUS
approved