login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014597
Numbers k such that k^2 is a sum of distinct factorials.
8
1, 3, 5, 11, 12, 27, 29, 71, 72, 213, 215, 603, 635, 1917, 1183893
OFFSET
1,2
COMMENTS
a(16)^2 > 48! (about 1.24139*10^61), if it exists. - Jon E. Schoenfield, Aug 04 2006
A197183(a(n)) = 1. - Reinhard Zumkeller, Dec 04 2011
a(16) > 4.3*10^55 if it exists. - Bert Dobbelaere, Sep 16 2020
REFERENCES
Posting by Dan Hoey to math-fun mailing list.
LINKS
Eric Weisstein's World of Mathematics, Factorial
EXAMPLE
1183893^2 = 1! + 2! + 3! + 7! + 8! + 9! + 10! + 11! + 12! + 13! + 14! + 15!.
2 is not a member since 4 is not a sum of distinct factorials.
MATHEMATICA
ok[n_] := (k=1; ff={}; While[k! < n^2, AppendTo[ff, k!]; k++]; xx = Array[x, Length[ff]]; Reduce[And @@ (0 <= # <= 1 & /@ xx) && n^2 == xx.ff, xx, Integers] =!= False); ok[1] = True; Reap[Do[If[ok[n], Print[n]; Sow[n]], {n, 1, 2*10^6}]][[2, 1]] (* Jean-François Alcover, Jul 16 2012 *)
PROG
(Haskell)
import Data.List (elemIndices)
a014597 n = a014597_list !! (n-1)
a014597_list = tail $ elemIndices 1 $ map a197183 [0..]
-- Reinhard Zumkeller, Dec 04 2011
(Python)
from math import factorial, isqrt
from itertools import chain, combinations
from sympy.ntheory.primetest import is_square
fac =[factorial(n) for n in range(1, 16)] # raise 16 to search higher
def powerset(s): # skipping empty set
return chain.from_iterable(combinations(s, r) for r in range(1, len(s)+1))
gen = (isqrt(sum(s)) for s in powerset(fac) if is_square(sum(s)))
print(sorted(set(gen))) # Michael S. Branicky, Jan 03 2021
CROSSREFS
KEYWORD
nonn,more,hard,nice
EXTENSIONS
15th term from Jud McCranie, who remarks that there no others involving terms < 21!.
STATUS
approved