login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014322
Convolution of Bell numbers with themselves.
8
1, 2, 5, 14, 44, 154, 595, 2518, 11591, 57672, 308368, 1762500, 10716321, 69011130, 468856113, 3348695194, 25064539520, 196052415230, 1598543907843, 13556379105766, 119332020447219, 1088376385244908, 10268343703117892, 100063762955374568, 1005822726810785809
OFFSET
0,2
COMMENTS
Equals row sums of triangle A144155. - Gary W. Adamson, Sep 12 2008
LINKS
Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv preprint arXiv:1203.3786 [math.CO], 2012. - From N. J. A. Sloane, Sep 17 2012
FORMULA
G.f.: (1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))))^2, a continued fraction. - Ilya Gutkovskiy, Sep 25 2017
G.f.: ( Sum_{j>=0} A000110(j)*x^j )^2. - G. C. Greubel, Jan 08 2023
MAPLE
with(combinat):
a:= n-> add(bell(i)*bell(n-i), i=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, May 13 2014
MATHEMATICA
a[n_]:= Sum[BellB[k]*BellB[n-k], {k, 0, n}];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 17 2016 *)
PROG
(Magma)
A014322:= func< n | (&+[Bell(j)*Bell(n-j): j in [0..n]]) >;
[A014322(n): n in [0..40]]; // G. C. Greubel, Jan 08 2023
(SageMath)
def A014322(n): return sum(bell_number(j)*bell_number(n-j) for j in range(n+1))
[A014322(n) for n in range(41)] # G. C. Greubel, Jan 08 2023
CROSSREFS
Column k=2 of A292870.
Sequence in context: A081558 A202059 A350492 * A095148 A368636 A060996
KEYWORD
nonn
STATUS
approved