login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014275
Inverse of 266th cyclotomic polynomial.
1
1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
Periodic with period length 266. - Ray Chandler, Apr 03 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (-1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, -1, -1, 0, 1, 1, 1, 1, 1, 1, 0, -1, -1, -1, -1, -1, 0, 1, 1, 1, 1, 1, 1, 0, -1, -1, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, -1, -1).
MAPLE
with(numtheory, cyclotomic); c := n->series(1/cyclotomic(n, x), x, 80);
MATHEMATICA
CoefficientList[Series[1/Cyclotomic[266, x], {x, 0, 200}], x] (* Vincenzo Librandi, Apr 08 2014 *)
PROG
(Magma) t:=266; u:=1; m:=u*t+2; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/CyclotomicPolynomial(t))); // Vincenzo Librandi, Apr 08 2014
CROSSREFS
Sequence in context: A014170 A014331 A014142 * A014128 A014247 A014100
KEYWORD
sign,easy
AUTHOR
STATUS
approved