OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
T. Lu, The enumeration of trees with and without given limbs, Discr. Math., 154 (1996), 153-165, Example 4.
FORMULA
G.f. (x-2*x^3+x^4)/[Product_{p >= 1} (1-x^p)^(2*a(p))], in implicit form. - R. J. Mathar, Feb 26 2016
a(n) ~ c * d^n / n^(3/2), where d = 5.31351404806511900111976949727598017431010423107784202438023676025442... and c = 0.19638268380963259854038594083610578852611575... . - Vaclav Kotesovec, Feb 28 2016
MATHEMATICA
nmax = 30; b = ConstantArray[0, nmax+1]; b[[1]] = 0; b[[2]] = 1; Do[b[[n+1]] = SeriesCoefficient[(x - 2*x^3 + x^4) / Product[(1 - x^p)^(2*b[[p+1]]), {p, 1, n-1}], {x, 0, n}], {n, 2, nmax}]; b (* Vaclav Kotesovec, Feb 28 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved