login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

log(arcsinh(x)+cos(x)) = x-2/2!*x^2+4/3!*x^3-16/4!*x^4+88/5!*x^5...
1

%I #10 Nov 01 2013 15:26:23

%S 0,1,-2,4,-16,88,-560,4184,-37952,398848,-4613632,58835456,-835257344,

%T 12993783424,-217535518720,3911934210560,-75654182936576,

%U 1562951627091968,-34235182359642112,793328025614454784

%N log(arcsinh(x)+cos(x)) = x-2/2!*x^2+4/3!*x^3-16/4!*x^4+88/5!*x^5...

%H Alois P. Heinz, <a href="/A013115/b013115.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) ~ (n-1)! * (-1)^(n+1) * (1/r)^n, where r = 0.77593521146452669... is the root of the equation sqrt(r^2+1) = r + exp(-cos(r)). - _Vaclav Kotesovec_, Nov 01 2013

%t CoefficientList[Series[Log[ArcSinh[x]+Cos[x]], {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Nov 01 2013 *)

%K sign

%O 0,3

%A Patrick Demichel (patrick.demichel(AT)hp.com)

%E Prepended missing a(0)=0 from _Vaclav Kotesovec_, Nov 01 2013