login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


A013115
log(arcsinh(x)+cos(x)) = x-2/2!*x^2+4/3!*x^3-16/4!*x^4+88/5!*x^5...
1
0, 1, -2, 4, -16, 88, -560, 4184, -37952, 398848, -4613632, 58835456, -835257344, 12993783424, -217535518720, 3911934210560, -75654182936576, 1562951627091968, -34235182359642112, 793328025614454784
OFFSET
0,3
LINKS
FORMULA
a(n) ~ (n-1)! * (-1)^(n+1) * (1/r)^n, where r = 0.77593521146452669... is the root of the equation sqrt(r^2+1) = r + exp(-cos(r)). - Vaclav Kotesovec, Nov 01 2013
MATHEMATICA
CoefficientList[Series[Log[ArcSinh[x]+Cos[x]], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 01 2013 *)
CROSSREFS
Sequence in context: A300100 A212432 A351287 * A291286 A007171 A058136
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
Prepended missing a(0)=0 from Vaclav Kotesovec, Nov 01 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 12:28 EDT 2024. Contains 376072 sequences. (Running on oeis4.)