Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Mar 28 2024 21:54:08
%S 0,2,-8,-88,6592,-9568,-49063808,4426189952,1122968737792,
%T -441081682390528,-23926396899780608,74405808039377364992,
%U -16597462789247237931008,-19016633437725878038847488
%N Expansion of e.g.f. arcsinh(sin(x)*sin(x)), even-indexed terms only.
%H Vaclav Kotesovec, <a href="/A012299/b012299.txt">Table of n, a(n) for n = 0..220</a>
%H Vaclav Kotesovec, <a href="/A012299/a012299.jpg">graph a(n) / asymptotic</a>.
%F Lim sup n->oo (|a(n)|*n^(3/2)/(2*n)!)^(1/(2*n)) = 1.04762030856875... = 1/sqrt(arcsin(sqrt(1-1/sqrt(2)))^2 + (log(1+sqrt(2)-sqrt(2*(1+sqrt(2))))/2)^2). - _Vaclav Kotesovec_, Nov 02 2013
%e E.g.f. = 2*x^2/2! - 8*x^4/4! - 88*x^6/6! + 6592x^8/8! + ...
%t Table[n!*SeriesCoefficient[ArcSinh[Sin[x]*Sin[x]],{x,0,n}],{n,0,40,2}] (* _Vaclav Kotesovec_, Nov 02 2013 *)
%o (PARI) x='x+O('x^50); v=Vec(serlaplace(asinh(sin(x)^2))); concat([0], vector(#v\2,n,v[2*n-1])) \\ _G. C. Greubel_, Oct 25 2018
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Argsinh(Sin(x)^2) )); [0] cat [Factorial(2*n+2)*b[2*n+1]: n in [0..Floor((m-4)/2)]]; // _G. C. Greubel_, Oct 25 2018
%K sign
%O 0,2
%A Patrick Demichel (patrick.demichel(AT)hp.com)
%E Missing a(0)=0 prepended by _Vaclav Kotesovec_, Nov 02 2013